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Trends in Groundwater Storage from NASA GRACE Mission (2003-2013)

[mm H20 yr 1]

Richey, A.S., B.F. Thomas, M. Lo, J.T. Reager, J.S. Famiglietti, K. Voss,
S. Swenson, M. Rodell (2015), Quantifying Renewable Groundwater
Stress with GRACE, Water Resour. Res., doi: 10.1002/2015WR017349
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Groundwater Depletion in California’s Central Valley

* Since 1920s groundwater depletion has reached

more than 160 million acre-feet of groundwater

* Sustainable Groundwater Management Act

(SGMA) requires overdrafted groundwater basins

to achieve balance by 2040
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Managing extremes in surface water supply

Floods, sprng 2017
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Why agricultural MAR?

* Viable option for regions where large amounts of
excess water is less frequently available

High flow availability - Stanislaus River at Ripon, CA
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Factors influencing Ag-MAR adoption

Crop suitability
Cost & incentives
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Crop suitability

Terranova, wine grapes, fine sandy loam

* Flooded from April — July, 2011
* Infiltration rates: 2.5 in/day

* 1,274 AF on wine grapes
Bachand et al. 2014

TABLE 1. Survey results of tree crop vulnerability to saturated conditions

Tolerance to saturation  Tolerance to saturation Recommended N

Crop Rootstock before budbreak after budbreak fertilizer rate
Ibs N/ac/yr
Almonds Peach; peach x 1 1 250
almond hybrid
Almonds Plum; peach x plum 2-3 i 250
hybrid
Avocados — 0 0 150
Cherries — 1 0 60
Citrus — 0 0 100
Wine grapes — 4 2 15-30
Olives — ? 2 <100
Pears P. betulaefolia 4 4 100-150
Pears P.communis 4 3 100-150
Pears Cydonia oblonga 3-4 2-3 100-150
Pistachios — ? 2 200
Plums/prunes Peach 1 1 150
Plums/prunes Plum; peach x plum 2-3 1 150
hybrid
Pomegranate — ? ? 100
Walnuts — 2-3 1 200
Tolerance rating in the table:

O - no tolerance for standing water

1 - tolerant of standing water up to 48 hours
2 - tolerant of standing water up to 1 week
3 - tolerant of standing water up to 2 weeks
4 - tolerant of standing water > 2 weeks

? - tolerance unknown

O’Geen et al. 2015, CalAg




Risks of Ag-MAR in perennial cropping systems

* Anaerobic conditions and/or an
excessively high water table could:
* Impact root length, root production (yield),
* Increase risk of root diseases and plant pests,
* Increase nutrient and herbicide leaching,

Process of Respiration
in Roots

The carbon dioxide
which is given out by
the cells during
respiration also leaves
the roots through the
root hair by the process

of diffusion.
» Affect field operations due to wet conditions.
* Continued flooding has negative effects on
soil respiration (root & microbial) -
201 SS= N Water 0, ,
. . ¥ licati R
* Root zone residence time: 151 - - P
) L ) ON O, depletion ratead ,/ Re-aeration
» Time until critical O, level is exceeded o Nt = -—-------—---‘T:-,---,-/—---_--b---1-0-0/-----
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safe flooding duration to avoid root 51 ootz ot
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On-farm recharge experiments

Scott Valley, alfalfa, gravelly loam

e ‘ 8 /4| - Flooded Jan. 2016, 2017, 2018

* Flooded from Jan-Apr, 2015
* Direct recharge of up to 26 AF/acre
* |nfiltration rates: V8.4 in/day

* Recharge of 2 AF/acre
* Infiltration rates: 4-14 in/day
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Crop Suitability - almonds

Stem water potential
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Crop Suitability - almonds

* Recharge in winter showed no significant effects on new root production

* Significant reduction in total length of dead roots (increased root lifespan)

Modesto (fine sandy loam)

N
(6]
L

L]

15 |

10 |

Total length of new roots (m m"z)

= Grower rate
3 Winter recharge

Il

Modesto, 2016 | B

Modesto, 2017 —

Total length of new roots (m m

C \/
25
20 A

15 4

10 |

Total length of dead roots (m m'z)

_ ia im il

Modesto, 2016

1l il |

Total length of dead roots (m m'z)

Jan® Apr-Jun

g

Jul-Sep

Oct-De

Jan-Mar

Apr-Jun Jul-Sep Oct

period (beginning month-ending month)

\,\ .

Ma et al. 2020 submitted to CalAg, Volder et al. 2021 in prep

2

Total length of new roots (m m™)

Total length of dead roots (m m'z)

w
o

w
o
L

N
o
L

N
o
L

-
o
L

-
o
L

(6]
L

w
(3}

w
o
L

N
(&)

N
o
L

-
(&)
L

10 1

Delhi (sand)

Delhi, 2016

s Grower rate
= Winter recharge

Il i

B

Delhi, 2017

" Diﬁ 1

o
L

il

Delhi, 2016

& i,ﬁ

D

'

Delhi, 2017 |

1 iﬂ T

i_ﬁ /

ar  Apr-Jun Jul-Sep

Jan-Mar  Apr-Jun Jul-Sep Oct

ime period (beginning month-ending month)

UCDAVIS

Total length of new roots (m m'z)

Total length of dead roots (m m?)



Soil Nitrate Leaching — Almonds (2015/16)

* Orchards were flooded with 24 inches of water, 3-4 irrigation events in Dec/Jan of 2015/16

Delhi (sand) Modesto (fine sandy loam)
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Murphy et al. 2020 submitted Soil Nitrate: 1 kg/ha =0.89 Ibs/acre




Soil Nitrate Leaching — Almonds (2015/16)

* Orchards were flooded with 24 inches of water, 3-4 irrigation events in Dec/Jan of 2015/16

Delhi, CA - fine sand Modesto, CA — fine sandy loam
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Managing trade-offs in Ag-MAR
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Crop Suitability - Alfalfa 1st cutting (4/23/2019)
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Alfalfa Feed Quality Analysis ROCK RIVER

% LABORATORY, INC.

AGRICULTURAL ANALYSIS

y o

* Flooding could impact digestible fiber content

Amylase-treated
Treatment| neutral detergent
fiber (aNDF)

Control 1 39.75 Good b 31.54 Good a 12.07 a 2156 Premium a

Acid Detergent

Fiber (ADF) Crude Protein (CP)

4 on 10 off 2 42.23  Fair a 33.31 Fair a 11.79 High a 20.17 Premium b
3 on 4 off 3 40.72 Fair ab 32.02 Fair a 11.96 a 20.76 Premium ab
0.047 0.078 0.69 0.036
. . _ ADF NDF RFV TDN-100%  TDN-90%  CP-100%

aNDF = total insoluble fiber in feeds Supreme <27 <34 >185 >62 555.9 522

_ . . . Premium  27-29 34-36 170-185 6@.5-62 54.5-55.9  20-22
ADF = least digestible fiber, subset of aNDF Good 3033 3c-ap 1=a-37a Es-es Ezccac 1299
Ash = total mineral content Fair 32-35 40-44  130-150 56-58 50.5-52.5 16-18

. . . Utilit >35 >44 <13@ <56 <50.5 <16
CP = nitrogen content of alfalfa amino acids g
ADF = Acid Detergent Fiber; NDF = Neutral Detergent Fiber; RFV = Relative Feed
Value; TDN = Total Digestible nutrients. RFV calculated using the Wis/Minn
formula. TDN calculated using the western formula. Values based on 100% dry
matter, TDN both 9@%¥ and 1@0%.

T— U MMV I

T—

Dahlke et al. 2021 in prep Hay report: https://www.ams.usda.gov/mnreports/ml gr311.txt



https://www.ams.usda.gov/mnreports/ml_gr311.txt

Take-Away Points — Crop Suitability

* Flooding of semi-non-dormant alfalfa or almonds showed no significant
effect on yield

* On suitable (well drained) soils large amounts of water can be recharged

* Viable option for regions where large amounts of excess water is less
frequently available

* Flooding can create short-lived anoxic conditions in the root zone —
flooding duration < root zone residence time

* Winter flooding might affect feed quality (digestible fiber content) — more
research needed.

* Potentially greater need for herbicide applications to reduce weed pressure

/ I UCDAVIS




Factors influencing Ag-MAR adoption

Crop suitability
Cost & incentives
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What is the effect of large-scale Ag-MAR on
groundwater storage and streamflow?

/ L — UCDAVIS



Large-scale integrated groundwater-surface water modeling

C2VSim: Central Valley integrated groundwater-
surface water simulation model

Groundwater = *
Inflow

LEGEND

P Precipitation "Aw ..... Infiltration of applied water Dp..oca Deep percolation of water to the
AW, ... Water applied to agricultural lands Quyy...... Surface water diversion unsaturated zone .
AW,,.... Water applied to indoor urban lands T Agricultural runoff g’t Dp... 29‘:”5"99 to the groundwater at{u:ler
AW, .. Water applied to outdoor urban lands Syyororrnn Urban runoff o umping from groundwater Wf”’w

[ Evaporation Ry Return flow Qv Recharge to ymma!er aqz_:/fer
T Transpiration Ry, .. Agricultural return flow g. ......... fl eam-g

I'P ........ Infiltration of precipitation R'u ,,,,,,,, Urban return flow Leeesenas g

Brush et al., 2013, Dogrul et al. 2016

Orland-Artois Water District

' .| C2VSIM model domain
Model domain covers the Central s Rivers

I:I C2VSim sub-regions
Valley alluvial aquifer (53,645 km?)
32,537 finite elements

Central Valley basins

Urban areas

4 vertical groundwater layers

Model solves continuity equation
for stream nodes and 3D gw flow
equation

Flow through root zone and
unsaturated zone represented by
1D vertical flow component

Unsaturated zone flow is bypassed
for MAR simulations

Simulation period: 1921-2009

Kourakos et al., 2019 WRR

UCDAVIS



Large-scale integrated groundwater-surface water modeling
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Surface Water Supply and Groundwater Storage Change

Groundwater Budget Components For Stony Creek RTD2 (2 ft/yr), December only

few apart
T : 127

= Diverted amount

few together

s GW storage Gain
s GW-SW Exchange

Groundwater storage gain is high in
the first two decades.

[MAF]

Levels off over time as
groundwater system finds a new
dynamic equilibrium.
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Kourakos et al., 2019 WRR



Streamflow Response to Diversion

Stony Creek water level hydrograph
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ParFlow Model American-Cosumnes Basin

Highly-Detailed Representation of Geologic
Heterogeneity (meirovitz, 2010)
» Stochastic geostatistical model (TPROGS)
w/ ~1200 well logs
* 4 hydrofacies Gravel, 2, Muddy Sand, Mud

Managed Aquifer Recharge Simulations e

San Fran@isco

* 3D, variably-saturated flow _- By )
model, Parflow (kollet & Maxwell, 2006) S
* 5recharge sites of 1420 acres
e_ach; 10-cm ponded water e
e Sites 1-3 have sand & gravel
n_ear surface Gravel
e Sites 4&5 have muddy sand m——
an
and mud near surface
* 180-day simulations Muddy Sand
, Mud
30X vertical exaggeration '/ ’

—

Maples et al. 2019

Ksar (M/d)
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41.2

0.20
0.0017

Ss (m™)

4.0x10°
8.0x107
1.0x10*
1.0x1073

Sierra Nevada
Mountains

Fraction of
Total Vol.

0.23
0.14
0.18
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Subsurface recharge processes

Pressure Perturbation Simulations (0-180 days)

Main Benefits of Recharge: Site 1: gravel, sand near surface

1. Increase in Pressure (i.e., Piezometric Head)
in semi-confined aquifers

2. Increase in Groundwater Storage

Site 1

0-180 day Simulation

Pressure perturbation (m)
e 40

10 [

1.0

0.1

0.001

> 200m vertical pressure Site 5: silt, clay near surface
propagation
Below WT > 5km lateral pressure
propagation

Pressure Propagation Change-in-Storage .
in Semi-Confined Above & Below > Change in groundwater
Aquifer System Initial Water Table storage 65 times greater

Maples et al. 2019, Hydrogeology Journal than site 5




Factors influencing Ag-MAR adoption

Crop suitability
Cost & incentives

Laws and permits‘
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Suitable Ag-MAR Locations

Soil agricultural groundwater banking index (SAGBI)

e considers five major factors critical to sustaining crop health and rapid deep
percolation of applied water

Soil Agricultural Modified rating to reflect
Groundwater deep tillage and removal
Banking Index of restrictive horizons
D P Iati Rootzone T h Chemical limitati Surf | diti
eep Percolation residence time opography emical limitations urface condition
1 ] I
Harmonic mean Erodibility factor (Kw)
Lowest K... in soil of K., (all horizons) Depth weighted and sodium
profile presence of drainage class Slope class average of electrical adsorption ratio
restrictive horizons and high conductivity (geometric mean of
shrink-swell soils scores for two values)

L —— UCDAVIS

O’Geen et al. 2015, CalAg https://casoilresource.lawr.ucdavis.edu/sagbi/



https://casoilresource.lawr.ucdavis.edu/sagbi/

Soil Agricultural Groundwater
Banking Index

SAGBI Suitability Group

l: Excellent
e About 5.5-6.5 million acres of farmland suitable for recharge (S Good

Moderately Good

| Moderately Poor

T Poor

TABLE 2. Summary of the areal extent of Soil Agricultural Groundwater —
ery Poor

Banking Index groups generated from soil survey data

SSURGO modified by

SAGBI group Original SSURGO data deep tillage

acres %* acres %*
Excellent 1,477,191 8 1,557,035 9
Good 1,747,712 10 2,020,921 11
Moderately Good 1,786,972 10 1,984,414 11
Moderately Poor 1,343,250 8 1,364,066 8
Poor 4,866,942 28 4,586,645 26
Very Poor 6,375,277 36 6,084,142 35
Totalt 17,597,345 17,597,222

e — N

A
O’Geen et al. 2015, CalAg 0 0 m o 0 e



Soil Agricultural Groundwater Banking Index

€ O casoilresource.lawr.ucdavis.edu/sagbi/ & Q Search wEB O & 4 © @ *

31 | Soil Agricultural Groundwater Banking Index

S _ ... 020 WO v ) ""k ) ‘ 7 o
F ' == . ag |
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The SAGBI is based on the following factors:

- 85-100  Excellent

69 - 85 Good
49 - 69 Moderately Good
29 -49 Moderately Poor

SAGBI Rating (modified):  *
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Targeted recharge near rural communities
to improve water security
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Targeted recharge near vulnerable communities
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Targeted recharge for increased community resilience
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Targeted recharge near vulnerable communities

https://agra.ucdavis.edu

Agricultural Groundwater Recharge Assessment (AGRA)

Final Results

Suitable parcels for ag-MAR that can benefit community water supplies

Suitable Ag-MAR Locations ~

DAC Vulnerability to Groundwater Shortages ~
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Evolutionary multi-objective optimization of
MAR locations
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Hydro-economic determination of best MAR sites

* Implement evolutionary multi-objective
optimization algorithm with C2VSim-CG model

to determine best MAR locations

* Two main objective functions:

* Maximize groundwater storage or Rt

basin-wide groundwater level

* Minimize MAR costs = (1) land cost + (2) capital
cost + (3) pumping lift cost + (4) water acquisition
cost + (b) conveyance cost

* Recharge is started in 1965 of 1921-2015
modeling period

|| c2vsim-CG finite elements
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Scenarios — diversion amounts for recharge

Recharge locations scenarios Excess flow for the Friant-Kern canal diversion
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Caclulation of excess flow for Friant-Kern diversion
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http://subsurface.gr/joomla/MAR/ParetoAnalysisMAY20_95_temp.html

Conclusions

* On-farm recharge is a viable MAR option for regions where large amounts
of excess water is less frequently available

* Recharge can increase groundwater storage and return flow to streams

* Targeted recharge near communities vulnerable to groundwater shortage
can provide multiple benefits (water supply, water quality, climate resilience
etc.)

* On-farm recharge sites should be carefully selected based on soil type and
land use and nutrient use history (e.g. nitrate leaching potential)

* Field-level studies before implementation (i.e. soil analyses, stakeholder
interest, surface water availability)
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